ارائه مدل هیبرید تحلیل پوششی داده‌های پویا با ساختار شبکه‌ای جهت ارزیابی عملکرد زنجیره تامین پایدار

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مدیریت صنعتی، واحد تهران غرب، دانشگاه آزاد اسلامی، تهران، ایران

2 استاد گروه ریاضیات کاربردی، واحد علوم و تحقیقات تهران، دانشگاه آزاد اسلامی، تهران، ایران

3 دانشیار گروه ریاضی، واحد فیروزکوه، دانشگاه آزاد اسلامی، فیروزکوه، ایران

چکیده

 
هدف این مقاله ارائه مدل تحلیل پوششی داده‌ها‌ی پویا با ساختار شبکه‌ای جهت ارزیابی عملکرد زنجیره تامین پایدار است. بر همین اساس، با بهره گیری از مدل غیر شعاعی در تحلیل پوششی داده ها، مدلی با ساختار شبکه ای تدوین شده است که اول بتواند زنجیره تامین پایدار را به عنوان یک شبکه پیچیده و گسترده ارزیابی و رتبه بندی نماید؛ و دوم بتواند در دوره های زمانی متوالی با فعالیت های انتقالی پویا، کارایی را مورد سنجش قرار دهد و علاوه بر شاخص‌های رایج مالی و فنی، خروجی‌های نامطلوب و معیارهای پایداری را در شبکه تامین مدنظر قرار دهد. این پژوهش از نظر روش، توصیفی و از نظر هدف کاربردی و بر مبنای توسعه مدل ریاضی SBM غیر شعاعی در تحلیل پوششی داده ها می باشد. اعتبار مدل ارائه شده بر مبنای داده های واقعی 42 شرکت سیمان حاضر در بورس مورد آزمون و تائید قرار گرفته است. نتایج نشان داد این مدل به خوبی قادر است کارایی را در یک ساختار شبکه‌ای و پویا ارزیابی کند. بر اساس اجرای این مدل، تعداد 16 زنجیره تامین توانسته‌اند به مرز کارایی دست یابند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Provide a hybrid model of dynamic data envelopment analysis with network structure to evaluate the performance of a stable supply chain

نویسندگان [English]

  • Farhad Hosseinzadeh Lotfi 2
  • Naghi Shoja 3
  • Amir Gholam Abri 3
1 Department of Industrial Management, west tehran, Islamic Azad University, tehran, iran
2 Professor of applied mathematics, Tehran sciences and researches branch, Islamic azad university, Tehran, Iran.
3 Associate professor of mathematics group, Firouz kouh branch, Islamic azad university, Firouz kouh, Iran
چکیده [English]

The purpose of this paper is to present a dynamic data envelopment analysis model with a network structure to evaluate the performance of a stable supply chain. Accordingly, using the non-radial model in data envelopment analysis, A network structure model has been developed that can first evaluate and rank the sustainable supply chain as a complex and extensive network. And second, to be able to measure performance over successive time periods with dynamic transfer activities and In addition to the usual financial and technical indicators, it can consider unfavourable outputs and sustainability criteria in the supply network.  This research is descriptive in terms of method and applied in terms of purpose and is based on the development of SBM's mathematical model in non-radial data envelopment analysis. The validity of the presented model has been tested and approved based on the real data of 42 cement companies in the stock exchange. The results showed that this model is well able to evaluate the performance in a dynamic network structure Based on the implementation of this model, 16 chain Supplies have been able to reach the limit of efficiency.

کلیدواژه‌ها [English]

  • Dynamic Data Envelopment Analysis
  • stable supply chain
  • Network structure
سلیمانی دامنه، رضا (1398). توسعه یک مدل تحلیل پوششی داده های پویا (DDEA) جهت ارزیابی دوره ای واحدهای تصمیم گیرنده. چهارمین کنفرانس بین المللی مدیریت صنعتی.
علمداری، احسان و نصرت پناه، سیاوش و نجف زاده، مهدی. (1399). بررسی میزان تأثیر فناوری اطلاعات و ارتباطات با رویکرد مدیریت دانش در ارتقاء چابکی مدیریت زنجیره تأمین مجله علمی اندیشه آماد.(72) 96.19-75
محمدی فر، بهناز و ه پورعلی، سیده محبوب و امیری، مقصود (1395). ارایه یک مدل تحلیل پوششی داده های پویا با رویکرد اوزان مشترک اولین کنفرانس ملی مدل ها و تکنیک های کمی در مدیریت.
Amirteimoori, A. (2006). Data envelopment analysis in dynamic framework.’’ Applied mathematics and computation, No,181, pp.21-28.
Avkiran, N. Mccrystal, A. (2014). “Dynamic network range-adjusted measure vs. dynamic network slacks-based measure.’’ Journal of the Operations Research Society of japan, Vol, 57. No. 1. Pp1-14.
Azadi, M. & Jafarian, M. (2015). A new fuzzy DEA model for evaluation of efficiency and effectiveness of suppliers in sustainable supply chain management context.’’ Journal of Computers & Operations Research No.54, PP274 -285
 
Babazadeh, R. Razmi, J. Rabbani, M. (2017). An integrated data envelopment analysisemathematical programming approach to strategic biodiesel supply chain network design problem.’’ Journal of Cleaner Production. Vol, 3. No. 147, PP. 694-707.
Badiezadeh, T. & Farzipoor Saen, R. & Samavati, T. (2017). Assessing sustainability of supply chains by double frontier network  DEA: A big data approach.’’ Journal of Computers & Operations Research,No. 7. pp:1-7.
Boudaghi,E. Farzipoor Saen, R. (2018). “Developing a novel model of data envelopment analysis–discriminant analysis for predicting group membership of suppliers in sustainable supply chain.’’ Computers and Operations Research No. 89, pp. 348–359.
Brandenburg, m. (2014). Quantitative models for sustainable supply chain management: Developments and directions.’’ European Journal of Operational Research Volume 233, Issue 2, 1 March 2014, PP. 299-312.
Chehregani, H. (2016). “Reduction of environmental pollution of dust in the cement industry, Quarterly of Cement Industry’’, Journal of No. 31, pp. 52-38. [in persion].
Chen. C. M. (2009). “A network-DEA model with new efficiency measures to incorporate the dynamic effect in production networks.’’ European Journal of Operational Research, No.194, pp. 687-699.
Chen, Chien M. & van Dalen, J. (2010). “Measuring dynamic efficiency: theories and an integrated methodology.’’ European Journal of Operational Research, No. 203,pp. 749-760
Cook, Wade D. & Zhu, Joe. Bi, Gongbing. Yang, Feng. (2010). “Network DEA: Additive efficiency decomposition.’’ European Journal of Operational Research No. 207, pp.1122–1129
De Camargo Fiorini, P. Charbel José, j. (2017). “Information systems and sustainable supply chain management towards a more sustainable society.’’ International Journal of Information Management, Vol,37, Issue.4, PP. 241-249.
Emrouznejad, A. & Thanassoulis, E. (2005). “A mathematical model for dynamic efficiency using data envelopment analysis.’’ Journal of Applied Mathematics and Computation, No.160, pp.363-378
Fallahpour, A. Udoncy Olugu, E. Nurmaya Musa, S. Yew Wong, K. (2017). “A decision support model for sustainable supplier selection in sustainable supply chain management.’’ Journal of Computers and Industrial Engineering Vol. 105 Issue C, March pp. 391-410.
 
Farzipoor Saen, R. Torabipour, S. M. R. (2013). “Review of effective component's role on cold chain management performance by factor analysis approach for competitive organization’’. Iranian Journal of Trade Studies, Vol. 66, pp. 73-94 (in Persian).
Fernanda B.A.R. Mariz, Mariana R. Almeida. Daniel Aloise. (2018). “A review of Dynamic Data Envelopment Analysis: state of the art and applications.’’. Journal of Trans. in Op. Res. No.25, pp.469–505
Fukuyama, H. & Weber, W.L. (2015). “Measuring Japanese bank performance: A dynamic network DEA approach.’’ Journal of Productivity Analysis,Vol, 44. No. 3. Pp. 249-264.
Fukuyama, H. & Weber, W.L. (2016). Japanese bank productivity, 2007- 2012: A dynamic network approach. Journal of Productivity Analysis,Vol, 56. No. 4. Pp. 156-166.
Genovese, A. & Adolf A, A. Alejandro, F. (2017). “Sustainable supply chain management and the transition towards a circular economy: Evidence and some applications’’. Journal of Omega, Vol. 8, No. 1,PP. 344- 357.
Govindan, K. Kadziński, M. Sivakumar, R. (2016). “Application of a novel PROMETHEE-based method for construction of a group compromise ranking to prioritization of green suppliers in food supply chain.’’ Journal of In Omega No. 58, pp. 132–142.
Hatami-Marbini, A. Ebrahimnejad, A. Lozano, S. (2017). “Fuzzy efficiency measures in data envelopment analysis using lexicographic multiobjective approach.’’ Journal of Computers & Industrial Engineering Vol.6, No.105, PP.362–376.
Hosseinzadeh-Lotfi, f. Jahanshahloo, G.R. Mohammadpour, M. (2013). “An Extension of Cross Redundancy of Interval Scale Outputs and Inputs in DEA.’’ Hindawi Publishing Corporation Journal of Applied Mathematics,2013,No. 7 Article ID. pp.658635,
Hosseinzadeh-Lotfi, F. Taeb, Z. Abbasbandy, S. (2017). “Determine the Efficiency of Time Depended Units by Using Data Envelopment Analysis.’’ International Journal of Research in Industrial Engineering, Vol. 6, No. 3, pp.193–201.
Hsu, SH. Kuo, T. (2013). “Using DEMATEL to develop a carbon management model of supplier selection in green supply chain management.’’ In Journal of Cleaner Production No. 56,pp. 164e172.
 
 
Kannan, D. Sousa Jabbour, AB. (2014). “Selecting green suppliers based on GSCM practices: Using fuzzy TOPSIS applied to a Brazilian electronics company.’’ In European Journal of Operational Research pp. 233, 432.
Kao, CH. (2013). “Dynamic data envelopment analysis: A relational analysis.’’ In European Journal of Operational Research No. 227, pp. 325–330.
Khalili-Damghani, k. Ghasemi, p. (2016). “Uncertain Centralized/Decentralized Production-Distribution Planning Problem in Multi-Product Supply Chains: Fuzzy Mathematical Optimization Approaches.’’ journal of Industrial Engineering and Management Systems, Vol. 15, Issue 2,  2016, pp.156-172.
Kiani, Fatemeh, Ansari, Rahimi, (2014).”Economic, social and environmental impacts of Hegmatan cement plant on Shangjarin Village’’. Quarterly Journal of Rural Space and Rural Development,Vol, 24. No,2, pp. 144-133.
Moreno, P. & Lozano, S. (2016). “Super SBI Dynamic Network DEA approach to measuring efficiency in the provision of public services.’’ International Transactions In Operational Research, pp.1-21.
Nemoto, J. & Goto, M. (1999). “Dynamic data envelopment analysis: Modeling intertemporal behavior of a firm in the presence of productive inefficiencies.’’ Journal of Economics Letters, No.64, pp. 51-56.
Nemoto, J. & Goto, M. (2003). “Measurement of dynamic efficiency in production: An application of data envelopment analysis to Japanese electric utilities.’’ Journal of Productivity Analysis, No. 19, pp.191-210.
Olfat, L. Amiri, M. Bamdad Soufi, J. Pishdar, M. (2016). “A dynamic network efficiency measurement of airports performance considering sustainable development concept: A fuzzy dynamic network-DEA approach.’’ In Journal of Air - Transport Management No. 57, pp.272e290
Shabanpour, H. Yousefi, S. Farzipoor Saen, R. 2017. “Forecasting efficiency of green suppliers by dynamic data envelopment analysis and artificial neural networks.’’ Journal of Cleaner Production No.142, pp. 1098e1107.
Tavana, M. Shabanpour, H. (2016). “A hybrid goal programming and dynamic data envelopment analysis framework for sustainable supplier evaluation.’’ In Neural Comput & Applic DOI 10.1007/s00521-016-2274-z
 
Tavassoli, M. Farzipoor Saen, R. Faramarzi, G.R. (2015). “Developing network data envelopment analysis model for supply chain performance measurement in the presence of zero data.’’ Journal of Expert Systems, Vol. 32, No. 3
Tone, K. (2001). “A slacks-based measure of efficiency in data envelopment analysis.’’ European Journal of Operational Research, No.130,pp. 498–509.
Tone, k. & Tsutsui, M. (2010). “Dynamic DEA: A slacks-based measure approach. Journal of Omega’’, No. 38,pp. 3-4.
Tone, T. & Tsutsui, M. (2014). “Dynamic DEA with network structure: A slacks-based measure approach.’’ Journal of Omega, No.
42, pp. 124-131.
Zha, Y. Liang, N. Wu, M. & Bian, Y. (2016). “Efficiency evaluation of banks in china: A dynamic two-stage slacks-based measure approach.’’ Omega, http://dx.doi.org/10.1016/j.omega. pp.2014.12.008.